参考文献(References):
[1] LIU W Y.Intelligent fault diagnosis of wind turbines using multi-dimensional kernel domain spectrum technique[J].Measurement,2019,133:303.
[2] GAO Q W,LIU W Y,TANG B P,et al.A novel wind turbine fault diagnosis method based on intergral extension load mean decomposition multiscale entropy and least squares support vector machine[J].Renewable Energy,2018,116:169.
[3] XIA H,DAI L,SUN L P,et al.Analysis of the spatiotemporal distribution pattern and driving factors of renewable energy power generation in China[J].Economic Analysis and Policy,2023,80:414.
[4] CHEN R X,HUANG X,YANG L X,et al.Intelligent fault diagnosis method of planetary gearboxes based on convolution neural network and discrete wavelet transform[J].Computers in Industry,2019,106:48.
[5] REN H,LIU W Y,SHAN M C,et al.A novel wind turbine health condition monitoring method based on composite variational mode entropy and weighted distribution adaptation[J].Renewable Energy,2021,168:972.
[6] 王皓,周峰.基于小波包和BP神经网络的风机齿轮箱故障诊断[J].噪声与振动控制,2015,35(2):154.
[7] 王超,李大忠.基于 LSTM 网络的风机齿轮箱轴承故障预警[J].电力科学与工程,2020,36(9):40.
[8] 孟繁晔,高翼飞,陈长征,等.基于多方向振动数据的风机齿轮箱故障智能诊断[J].机械工程师,2022,16:66.
[9] 侯召国,王华伟,王峻洲,等.基于迁移学习与加权多通道融合的齿轮箱故障诊断[J].振动与冲击,2023,42(9):236.
[10] GUO Y L,WU G X,LIU X L.Small sample MKFCNN-LSTM transfer learning fault diagnosis method[C]//ZHANG H,FENG G J,WANG H J,et al.Proceedings of IncoME-VI and TEPEN 2021:Performance Engineering and Maintenance Engineering.Cham:Springer International Publishing,2022:265.
[11] WAN Z T,YANG R,HUANG M J.Deep transfer learning-based fault diagnosis for gearbox under complex working conditions[J].Shock and Vibration,2020,2020:1.
[12] LU Y,TANG J.On time-frequency domain feature extraction of wave signals for structural health monitoring[J].Measurement,2018,114:51.
[13] XIA Z G,XIA S X,WAN L,et al.Spectral regression based fault feature extraction for bearing accelerometer sensor signals[J].Sensors,2012,12(10):13694.
[14] TOMA R N,PROSVIRIN A E,KIM J M.Bearing fault diagnosis of induction motors using a genetic algorithm and machine learning classifiers[J].Sensors,2020,20(7):1884.
[15] HU D,ZHANG C,YANG T,et al.An intelligent anomaly detection method for rotating machinery based on vibration vectors[J].IEEE Sensors Journal,2022,22(14):14294.
[16] ZHANG Y F,KANG B Y,HOOI B,et al.Deep long-tailed learning:a survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(9):10795.
[17] RAFIEE R,RAFIEE S,TSE P W.Bearing fault diagnosis based on wavelet transform and fuzzy logic[J].Mechanical Systems and Signal Processing,2011,25(2):667.
[18] ROSENSTEIN M T,MARX Z,KAELBLING L P,et al.To transfer or not to transfer[C]//NIPS 2005 Workshop on Inductive Transfer:10 Years Later,December 5-8,2005,Vancouver,Canada.Cambridge:MIT Press 2005,898(3):4.
[19] AGAHI H,MAHMOODZADEH A.Decision fusion scheme for bearing defects diagnosis in induction motors[J].Electrical Engineering,2020,102(4):2269.
[20] AJAKAN H,GERMAIN P,LAROCHELLE H,et al.Domain-adversarial neural networks[EB/OL].(2014-12-15) [2024-02-01].https://doi.org/10.48550/arXiv.1412.4446.
[21] HINTON G,VINYALS O,DEAN J.Distilling the knowledge in a neural network[EB/OL].(2015-03-09)[2024-02-01].https://doi.org/10.48550/arXiv.1503.02531.
[22] SHAO S Y,McALEER S,YAN R Q,et al.Highly accurate machine fault diagnosis using deep transfer learning[J].IEEE Transactions on Industrial Informatics,2019,15(4):2446.
[23] DAI W Y,YANG Q,XUE G R,et al.Boosting for transfer learning[C]//GHAHRAMANI Z.ICML’07:Proceedings of the 24th International Conference on Machine Learning.New York:Association for Computing Machinery,2007:193.
[24] TZENG E,HOFFMAN J,ZHANG N,et al.Deep domain confusion:maximizing for domain invariance[EB/OL].(2014-12-10) [2024-02-01].https://doi.org/10.48550/arXiv.1412.3474.
[25] HUANG J T,LI J Y,YU D,et al.Cross-language knowledge transfer using multilingual deep neural network with shared hidden layers[C]//2013 IEEE International Conference on Acoustics,Speech and Signal Processing,May 26-31,2013,Vancouver,Canada.New York:IEEE,2013:7304.