2025年 03期

Effects of Mixotrophy on Intracellular Metabolite of Microalgaes in Freshwater


摘要(Abstract):

为了探究不同营养方式下淡水微藻麦可藻Mychonastes afer的生长及胞内活性物质积累差异,以水产养殖中的经济藻种小球藻Chlorella sorokiniana作为对照,分别测定高浓度二氧化碳条件下2种微藻在自养、兼养条件下的生长状况、有机碳源、各色素含量、抗氧化能力及脂肪酸组成。结果表明:在兼养条件下,麦可藻与小球藻均能实现较快生长,麦可藻具有更高的色素含量与抗氧化能力,其叶绿素a、叶绿素b及类胡萝卜素的含量较自养条件下的分别提高504%、 149%、 88%,而小球藻的色素含量及抗氧化能力均较自养条件下的下降;麦可藻的饱和脂肪酸和单不饱脂肪酸占比提高,神经酸C24∶1含量提高145%; 2种微藻对光能和有机碳源的协同代谢机制存在显著差异,在兼养条件下麦可藻具备更高的生产速率,活性物质含量更高。

关键词(KeyWords):兼养培养;麦可藻;小球藻;胞内活性物质

基金项目(Foundation):青海省重点研发与转化计划项目(2022-NK-111)

作者(Author): 方霞,夏皖月,孙璐,PHUNG Nghi Van,李晨,董炳喆,范勇,李强,李福利

DOI: 10.13349/j.cnki.jdxbn.20240611.001

参考文献(References):

[1]LI S N,SHI X L,LEPèRE C,et al.Unexpected predominance of photosynthetic picoeukaryotes in shallow eutrophic lakes[J].Journal of Plankton Research,2016,38(4):830.

[2]NAGAPPAN S,DAS P,ABDULQUADIR M,et al.Potential of microalgae as a sustainable feed ingredient for aquaculture[J].Journal of Biotechnology,2021,341:1.

[3]NICCOLAI A,ZITTELLI G C,RODOLFI L,et al.Microalgae of interest as food source:biochemical composition and digestibility[J].Algal Research,2019,42:101617.

[4]KIRON V,S?RENSEN M,HUNTLEY M,et al.Defatted biomass of the microalga,Desmodesmus sp.,can replace fishmeal in the feeds for Atlantic salmon[J].Frontiers in Marine Science,2016,3:67.

[5]PRABHA S P,NAGAPPAN S,RATHNA R,et al.Blue biotechnology:a vision for future marine biorefineries[M]//PRAVEENKUMER R,GNANSOUNOU E,KENTHORAI RAMAN J,et al.Refining Biomass Residues for Sustainable Energy and Bioproducts:Technology,Advances,Life Cycle Assessment,and Economics.Cambridge:Academic Press,2019:463.

[6]YU W,LIN H Z,YANG Y K,et al.Effects of supplemental dietary Haematococcus pluvialison growth performance,antioxidant capacity,immune responses and resistance to Vibrio harveyi challenge of spotted sea bass Lateolabrax maculatus[J].Aquaculture Nutrition,2020,27(2):355.

[7]LIU F,QU Y K,WANG A M,et al.Effects of carotenoids on the growth performance,biochemical parameters,immune responses and disease resistance of yellow catfish (Pelteobagrus fulvidraco)under high-temperature stress[J].Aquaculture,2019,503:293.

[8]SUPAMATTAYA K,KIRIRATNIKOM S,BOONYARATPALINM,et al.Effect of a Dunaliella extract on growth performance,health condition,immune response and disease resistance in black tiger shrimp (Penaeus monodon)[J].Aquaculture,2005,248(1/2/3/4):207.

[9]JIANG J F,NUEZ-ORTIN W,ANGELL A,et al.Enhancing the colouration of the marine ornamental fish Pseudochromis fridmani using natural and synthetic sources of astaxanthin[J].Algal Research,2019,42:101596.

[10]YUAN C,LIU J H,FAN Y,et al.Mychonastes afer HSO-3-1as a potential new source of biodiesel[J].Biotechnology for Biofuels,2011,4(1):47.

[11]FAN Y,MENG H M,HU G R,et al.Biosynthesis of nervonic acid and perspectives for its production by microalgae and other microorganisms[J].Applied Microbiology and Biotechnology,2018,102(7):3027.

[12]师晓艺,丁晓婷,万子璇,等.产神经酸微藻Mychonastes afer的兼养固碳培养[J].南方水产科学,2022,18(2):134.

[13]LIU C Q,SHI X L,WU F,et al.Genome analyses provide insights into the evolution and adaptation of the eukaryotic Picophytoplankton Mychonastes homosphaera[J].BMC Genomics,2020,21(1):1.

[14]PATEL A K,JOUN J M,HONG M E,et al.Effect of light conditions on mixotrophic cultivation of green microalgae[J].Bioresource Technology,2019,282:245.

[15]PRIBYL P,CEPáK V.Screening for heterotrophy in microalgae of various taxonomic positions and potential of mixotrophy for production of high-value compounds[J].Journal of Applied Phycology,2019,31:1555.

[16]MENEGOL T,ROMERO-VILLEGAS G I,LóPEZ-RODRíGUEZM,et al.Mixotrophic production of polyunsaturated fatty acids and carotenoids by the microalga Nannochloropsis gaditana[J].Journal of Applied Phycology,2019,31(5):2823.

[17]SUN Z L,DOU X,WU J,et al.Enhanced lipid accumulation of photoautotrophic microalgae by high-dose CO mimics a heterotrophic characterization[J].World Journal of Microbiology and Biotechnology,2016,32(1):9.

[18]JIAO K L,XIAO W P,XU Y C,et al.Using a trait-based approach to optimize mixotrophic growth of the red microalga Porphyridium purpureum towards fatty acid production[J].Biotechnology for Biofuels,2018,11:273.

[19]CAO Q S,SUN W B,YANG T,et al.The toxic effects of polystyrene microplastics on freshwater algae Chlorella pyrenoidosa depends on the different size of polystyrene microplastics[J].Chemosphere,2022,308(Pt 1):136135.

[20]ANSARI F A,GULDHE A,GUPTA S K,et al.Improving the feasibility of aquaculture feed by using microalgae[J].Environmental Science and Pollution Research,2021,28(32):43234.

[21]SHEIKHZADEH N,SOLTANI M,HEIDARIEH M,et al.Role of dietary microalgae on fish health and fillet quality:recent insights and future prospects[J].Fishes,2024,9(1):26.

[22]ZHANG Z,SUN D Z,CHENG K W,et al.Investigation of carbon and energy metabolic mechanism of mixotrophy in Chromochloris zofingiensis[J].Biotechnology for Biofuels,2021,14(1):36.

[23]LIU Y Q,ZHOU J,LIU D,et al.A growth-boosting synergistic mechanism of Chromochloris zofingiensis under mixotrophy[J].Algal Research,2022,66.

[24]ROTH M S,GALLAHER S D,WESTCOTT D J,et al.Regulation of oxygenic photosynthesis during trophic transitions in the green alga Chromochloris zofingiensis[J].Plant Cell,2019,31(3):579.

[25]XIANG T T,JINKERSON R E,CLOWEZ S,et al.Glucoseinduced trophic shift in an endosymbiont dinoflagellate with physiological and molecular consequences[J].Plant Physiology,2018,176(2):1793.

[26]NISAR N,LI L,LU S,et al.Carotenoid metabolism in plants[J].Molecular Plant,2015,8(1):68.