2025年 03期

Novel Medical Pneumatic Proportional Control Module Based on Active Disturbance Rejection Control


摘要(Abstract):

为了解决现有气动医疗设备结构复杂、控制模式单一、开发周期长的缺陷,提出一种新型医用气动比例控制模块;该模块集成比例阀和差压、压力传感器及微控制单元,具备体积控制通气和压力控制通气功能;针对机械通气的压力控制性能易受呼吸力学参数、泄漏等因素影响的特点,采用自抗扰控制策略提高系统的稳定性和鲁棒性;通过仿真实验验证自抗扰控制器的可行性,在不同设定值、肺顺应性、气道阻力、呼吸频率下开展实验以评估模块性能。结果表明,新型医用气动比例控制模块具有体积小、集成度高、模块化的特点;在呼吸力学参数不确定和外部干扰条件下,该模块的压力控制、体积流量控制范围分别为0~10 kPa、 0~200 L/min,且压力控制的响应时间、超调量和控制精度分别小于200 ms、 5%和±1%,流量控制的响应时间、超调量和控制精度分别小于150 ms、 2%和±2%,满足医疗器械小型化、集成化、高精度的要求。

关键词(KeyWords):自动化技术;气动比例控制;自抗扰控制;机械通气;气动医疗设备

基金项目(Foundation):国家自然科学基金项目(52005015);; 北京市自然科学基金项目(3232014)

作者(Author): 名小川,胡慧,王涛,任帅

DOI: 10.13349/j.cnki.jdxbn.20250326.001

参考文献(References):

[1] GRASSELLI G,PESENTI A,CECCONI M.Critical care utilization for the COVID-19 outbreak in Lombardy,Italy:early experience and forecast during an emergency response[J].Journal of the American Medical Association,2020,323(16):1545-1546.

[2] SOARES G F,ALMEIDA O M,MENEZES J W M,et al.Air-oxygen blenders for mechanical ventilators:a literature review[J].Sensors,2022,22(6):2182.

[3] ALMEIDA D I R,CáRDENAS A C,FUENTES I O H,et al.Modeling and control of an invasive mechanical ventilation system using the active disturbances rejection control structure[J].ISA Transactions,2022,129(Part A):345.

[4] GOYAL V,MISHRA P,DEOLIA V K.A robust fractional order parallel control structure for flow control using a pneumatic control valve with nonlinear and uncertain dynamics[J].Arabian Journal for Science and Engineering,2019,44:2597-2599.

[5] HUNNEKENS B,KAMPS S,VAN DE WOUW N.Variable-gain control for respiratory systems[J].IEEE Transactions on Control Systems Technology,2020,28(1):163-166.

[6] BORRELLO M.Modeling and control of systems for critical care ventilation[C]//Proceedings of the 2005,American Control Conference,June 8-10,2005,Portland,USA.NewYork:IEEE,2005:2174-2176.

[7] YUAN Y,YU Y,GUO L,et al.Nonlinear active disturbance rejection control for the pneumatic muscle actuators with discrete-time measurements[J].IEEE Transactions on Industrial Electronics,2018,66(3):2044.

[8] YUAN Y,YU Y,WANG Z D,et al.A sampled-data approach to nonlinear ESO-based active disturbance rejection control for pneumatic muscle actuator systems with actuator saturations[J].IEEE Transactions on Industrial Electronics,2019,66(6):4608.

[9] ARCOS-LEGARDA J,TOVAR A.Mechatronic design and active disturbance rejection control of a bag valve-based mechanical ventilator[J].Journal of Medical Devices,2021,15(3):031006.

[10] HAN J Q.From PID to active disturbance rejection control[J].IEEE Transactions on Industrial Electronics,2009,56(3):901-904.

[11] 朱斌.自抗扰控制入门[M].北京:北京航空航天大学出版社,2017:25-35.

[12] 韩京清.自抗扰控制技术:估计补偿不确定因素的控制技术[M].北京:国防工业出版社,2008:124-167.

[13] SHI Y,REN S,CAI M L,et al.Working characteristics of a mechanical insufflation-exsufflation device[J].Mathematical Problems in Engineering,2014,2014(1):830361.

[14] SHI Y,REN S,CAI M L,et al.Modelling and simulation of volume controlled mechanical ventilation system[J].Mathematical Problems in Engineering,2014,2014(1):271053.

[15] REN S,SHI Y,CAI M L,et al.Influence of airway secretion on airflow dynamics of mechanical ventilated respiratory system[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2017,15(5):1661-1662.