2025年 05期

Dynamic Multi-objective Optimization Strategy Based on Segmented Prediction of Decision Space


摘要(Abstract):

为了快速、准确地追踪新环境下的Pareto解集,解决传统单一中心点预测不准确且产生的代表性精英个体数量少等问题,提出基于决策空间分段预测(SPDS)的动态多目标优化策略。首先,将前一时刻获取到的Pareto解集按照欧氏距离均匀分成3段,确保搜索空间的广度与搜索效率;其次,求得每段Pareto解集的中心点移动步长;最后,通过线性预测机制分段预测下一代种群,使算法更具鲁棒性和适应性。为了验证SPDS策略的有效性,采用15个标准动态测试函数实验对比动态非支配排序遗传算法-Ⅱ(DNSGA-Ⅱ-A)、种群预测策略(PPS)和基于特殊点的预测策略(SPPS)等算法在使用和不使用SPDS策略的性能,并将SPDS-DNSGA-Ⅱ-A算法应用于柴油机比例-积分-微分参数优化中。结果表明,SPDS策略在反向世代距离指标上的最优率分别比对比算法高78.33%,收敛性和多样性均有不同程度提高,可以适应动态环境变化,有效解决动态多目标优化问题。

关键词(KeyWords):动态多目标优化;进化算法;分段预测;决策空间

基金项目(Foundation):国家自然科学基金项目(62063019);; 甘肃省自然科学基金项目(20JR10RA152,22JR5RA241)

作者(Author): 李二超,刘辰淼

DOI:10.13349/j.cnki.jdxbn.20250705.001

参考文献(References):

[1] 张丹丽,曹锦,高彦杰.多目标进化算法研究综述[J].科技创新与应用,2021,11(28):69.

[2] 赵宝锋,赵倩倩,彭旭东,等.多产品空分供气网络生产调度[J].高校化学工程学报,2023,37(3):476.

[3] 甘婕,张文宇,王磊,等.两部件系统视情维修与生产调度的联合优化模型[J].控制与决策,2021,36(6):1377.

[4] BERGER R,BEUNS M,EHRMANN A,et al.EngiO:object-oriented framework for engineering optimization[J].Advances in Engineering Software,2021,153:102959.

[5] ZHANG S H,GUI G F,WANG W D.Joint data downloading and resource management for small satellite cluster networks[J].IEEE Transactions on Vehicular Technology,2022,71(1):888.

[6] WANG C L,YANG X,LI H.Improved Q-learning applied to dynamic obstacle avoidance and path planning[J].IEEE Access,2022,10:92880.

[7] FARINA M,DEB K,AMATO P.Dynamic multi-objective opti-mization problems:test cases,approximations,and applications[J].IEEE Transactions on Evolutionary Computation,2004,8(5):425.

[8] DEB K,AGRAWAL S,PRATAP A,et al.A fast and elitist multi-objective genetic algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,6(2):190.

[9] DEB K,RAO N U B,KARTHIK S.Dynamic multi-objective optimization and decision-making using modified NSGA-Ⅱ:a case study on hydro-thermal power scheduling[C]//OBAYASHI S,DEB K,POLONI C,et al.Evolutionary Multi-criterion Optimization(EMO 2007).Heidelberg:Springer,2007:810.

[10] SAHMOUD S,TOPCUOGLU H R.A memory-based NSGA-Ⅱ algorithm for dynamic multi-objective optimization problems[C]//SQUILLERO G,BURELLI P.Applications of Evolutionary Computation (EvoApplications 2016).Cham:Springer,2016:296.

[11] HATZAKIS I,WALLACE D.Dynamic multi-objective optimization with evolutionary algorithms:a forward-looking approach[C]//GECCO’06:Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation,July 8-12,2006,Seattle,USA.New York:ACM,2006:1204.

[12] ZHOU A M,JING Y C,ZHANG Q F.A population prediction strategy for evolutionary dynamic multi-objective optimization[J].IEEE Transactions on Cybernetics,2014,44(1):44.

[13] LI Q Y,ZOU J,YANG S,et al.A predictive strategy based on special points for evolutionary dynamic multi-objective optimization[J].Soft Computing,2019,23(11):3730.

[14] RONG M,GONG D W,PEDRYCA W,et al.A multi-model prediction method for dynamic multi-objective evolutionary optimization[J].IEEE Transactions on Computation,2020,24(2):296.

[15] 李二超,周扬.基于分类的多策略预测方法求解动态多目标优化问题[J].控制与决策,2021,36(7):1575.

[16] ZHANG Q Y,JIANG S,YANG S,et al.Solving dynamic multi-objective problems with a new prediction-based optimization algorithm[J].PLoS One,2021,16(8):e0254839.

[17] WANG P D,MA Y J,WANG M H.A dynamic multi-objective optimization evolutionary algorithm based on particle swarm prediction strategy and prediction adjustment strategy[J].Swarm and Evolutionary Computation,2022,75:101164.

[18] ZHOU J W,ZOU J,YANG S X,et al.An evolutionary dynamic multi-objective optimization algorithm based on center-point prediction and sub-population autonomous guidance[C]//2018 IEEE Symposium Series on Computational Intelligence (SSCI),November 18-21,2018,Bangalore,India.New York:IEEE,2018:2149.

[19] RONG M,GONG D W,ZHANG Y,et al.Multidirectional prediction approach for dynamic multi-objective optimization problems[J].IEEE Transactions on Cybernetics,2018,49(9):3369.

[20] 刘若辰,马亚娟,张浪,等.基于预测策略的动态多目标免疫优化算法[J].计算机学报,2015,38(8):1554.

[21] 彭星光,徐德民,高晓光.基于Pareto解集关联与预测的动态多目标进化算法[J].控制与决策,2011,26(4):615.

[22] XU B,ZHANG Y,GONG D W,et al.Environment sensitivity-based cooperative co-evolutionary algorithms for dynamic multi-objective optimization[J].IEEE/ACM transactions on computational biology and bioinformatics,2017,15(6):1880.

[23] GOH C K,TAN K C.A competitive-cooperative coevolutionary paradigm for dynamic multi-objective optimization[J].IEEE Transactions on Evolutionary Computation,2008,12(1):113.

[24] YUAN Y,XU H,WANG B,et al.Balancing convergence and diversity in decomposition-based many-objective optimizers [J].IEEE Transactions on Evolutionary Computation,2016,20(2):190.

[25] 张明亮.柴油机调速执行器原理解析[J].电力工程技术创新,2023,5(2):163.