参考文献(References):
[1] LI S Y,ZHANG B,FEI L K,et al.Joint discriminative feature learning for multimodal finger recognition[J].Pattern Recognition,2021,111:107704.
[2] QIN H F,HU R S,El-YACOUBI M A.Local attention transformer-based full-view finger-vein identification[J].IEEE Transactions on Circuits and Systems for Video Technology,2022,33:2767.
[3] KIRCHGASSER S,KAUBA C,LAI Y L,et al.Finger vein template protection based on alignment-robust feature description and index-of-maximum hashing[J].IEEE Transactions on Biometrics,Behavior,and Identity Science,2020,2(4):337.
[4] WU J D,YE S H.Driver identification using finger-vein patterns with radon transform and neural network[J].Expert Systems with Application,2009,36(3):5793.
[5] HUANG J D,LUO W J,YANG W L,et al.FVT:finger vein transformer for authentication[J].IEEE Transactions on Instrumentation and Measurement,2022,71:5011813.
[6] ZHAO P Y,CHEN Z Q,XUE J H,et al.Single-sample finger vein recognition via competitive and progressive sparse representation[J].IEEE Transactions on Biometrics,Behavior,and Identity Science,2022,5(2):209.
[7] 李菲,李小霞,周颖玥,等.基于改进HOG特征和稀疏表示的手指静脉识别[J].传感器与微系统,2018,37(11):38.
[8] 王艳芳,陈磊,黄经纬.基于非局部稀疏去噪与LBP算法的指静脉识别[J].自动化应用,2020(10):21.
[9] ZHOU L Z,YANG L,FU D Q,et al.Encoding coefficient similarity-based multifeature sparse representation for finger vein recognition[J].IET Biometrics,2023,2023:9253739.
[10] LEI L,XI F,CHEN S Y,et al.A sparse representation denoising algorithm for finger-vein image based on dictionary learning[J].Multimedia Tools and Applications,2021,80:15135.
[11] MIURA N,NAGASAKA A,MIYAKAFUMI T.Feature extraction of finger vein patterns based on repeated line tracking and its application to personal identification[J].Machine Vision and Applications,2004,15:194.
[12] MIURA N,NAGASAKA A,MIYAKAFUMI T.Extraction of finger-vein patterns using maximum curvature points in image profiles[J].IEICE Transcations on Information and Systems,2007,90(8):1185.
[13] YANG J F,SHI Y H,JIA G M.Finger-vein image matching based on adaptive curve transformation[J].Pattern Recognition,2017,66:34.
[14] KUMAR A,ZHOU Y B.Human identification using finger images[J].IEEE Transactions on Image Processing,2012,21(4):2228.
[15] LIU F,YANG G P,YIN Y L,et al.Singular value decomposition based minutiae matching method for finger vein recognition[J].Neurocomputing,2014,145:75.
[16] MATSYDA Y,MIURA N,NAGASAKA A,et al.Finger-vein authentication based on deformation-tolerant feature-point matching[J].Machine Vision and Applications,2016,27:237.
[17] MENG X J,ZHENG J W,XI X M,et al.Finger vein recognition based on zone-based minutia matching[J].Neurocomputing,2021,423:110.
[18] KANG W X,LU Y T,LI D J,et al.From noise to feature:exploiting intensity distribution as a novel soft biometric trait for finger vein recognition[J].IEEE Transactions on Information Forensics and Security,2019,14(4):858.
[19] LU Y,XIE S J,YOON S,et al.Finger vein identification using polydirectional local line binary pattern[C]//2013 International Conference on ICT Convergence (ICTC),October 14-16,2013,Jeju,Republic Korea.New York:IEEE,2013:61.
[20] LU Y,YOON S,XIE S J,et al.Finger vein recognition using generalized local line binary pattern[J].KSII Transactions on Internet & Information Systems,2014,8(5):1766.
[21] KAPOOR K,RANI S,KUMAR M,et al.Hybrid local phase quantization and grey wolf optimization based SVM for finger vein recognition[J].Multimedia Tools and Applications,2021,80(10):15233.
[22] ZHANG Z X,WANG M W.A simple and efficient method for finger vein recognition[J].Sensors,2022,22(6):2234.
[23] YANG W L,LUO W,KANG W X,et al.FVRAS-Net:an embedded finger-vein recognition and antispoofing system using a unified CNN[J].IEEE Transactions on Instrumentation and Measurement,2020,69(11):8690.
[24] CHANG R C H,WANG C Y,LI Y H,et al.Design of low-complexity convolutional neural network accelerator for finger vein identification system[J].Sensors,2023,23(4):2184.
[25] WANG Y,SHI D K,ZHOU W B.Convolutional neural network approach based on multimodal biometric system with fusion of face and finger vein features[J].Sensors,2022,22(16):6039.
[26] 汪凯旋,陈光化,褚洪佳.基于改进的ResNet手指静脉识别[J].激光与光电子学进展,2021,58(20):100.
[27] SHAHEED K,MAO A H,QURESHI I,et al.DS-CNN:a pre-trained Xception model based on depth-wise separable convol-utional neural network for finger vein recognition[J].Expert Systems with Applications,2022,191:116288.
[28] YIN Y L,LIU L L,SUN X W.SDUMLA-HMT:a multimodal biometric database[M]//SUN Z N,LAI J H,CHEN X L,et al.Biometric Recognition(CCBR 2011):Lecture Notes in Computer Science,Vol 7098.Berlin,Heidelberg:Springer,2011:260.
[29] SHAZEEDA S,ROSDI B A.Nearest centroid neighbor based sparse representation classification for finger vein recognition[J].IEEE Access,2019,7:5874.
[30] SHAZEEDA S,ROSDI B A.Finger vein recognition using mutual sparse representation classification[J].IET Biometrics,2019,8(1):49.
[31] SHI X F,YANG L,GUO J,et al.Cross-area finger vein recognition via hierarchical sparse representation[M]//LIU Q S,WANG H Z,MA Z Y,et al.Pattern Recognition and Computer Vision(PRCV 2023):Lecture Notes in Computer Science,Vol 14429.Singapore:Springer,2023:86.