2025年 06期

Removing Methylene Blue by Dual-photoelectrode Photocatalytic Fuel Cell and Simultaneous Generation of Electricity


摘要(Abstract):

为了构建具有优异性能的光催化燃料电池系统,利用阳极氧化法和水热法制备全硫代铟酸锌ZnIn_2S_4-二氧化钛TiO_2纳米管阵列-钛Ti光电阳极,利用湿化学法制备氧化亚铜与氧化铜耦合物Cu_xO-铜Cu光电阴极,采用紫外-可见漫反射光谱分析、 X射线衍射分析、扫描电子显微镜、线性扫描循环伏安法等手段表征电极物相结构特征和光电化学性能,探究双光电极光催化燃料电池系统在模拟太阳光照射下催化降解亚甲基蓝并同步产电的性能和机制。结果表明:ZnIn_2S_4纳米片均匀负载在TiO_2纳米管阵列表面形成异质结界面,铜片表面原位生长Cu_xO纳米线阵列,所制备的光电阳极和光电阴极具有优异的光利用效率和光电化学性能,双光电极光催化燃料电池系统瞬时光电流密度最高可达0.219 mA/cm~2,模拟太阳光照射40 min亚甲基蓝降解率为97%,且重复利用性良好。

关键词(KeyWords):光催化燃料电池;光电极;纳米管阵列;有机物降解

基金项目(Foundation):山东省自然科学基金项目(ZR2020MB091)

作者(Author):王惠,王颖,王玉怡,冯锐,王立君,孙蒙,闫涛

DOI:10.13349/j.cnki.jdxbn.20240730.001

参考文献(References):

[1] HE Y,CHEN K D,LEUNG M K H,et al.Photocatalytic fuel cell:a review[J].Chemical Engineering Journal,2022,428:131074.

[2] BAI J,WANG R,LI Y P,et al.A solar light driven dual photoelectrode photocatalytic fuel cell (PFC) for simultaneous wastewater treatment and electricity generation[J].Journal of Hazardous Materials,2016,311:51.

[3] LU Y,CHU Y C,ZHENG W Z,et al.Significant tetracycline hydrochloride degradation and electricity generation in a visible-light-driven dual photoelectrode photocatalytic fuel cell using BiVO4/TiO2 NT photoanode and Cu2O/TiO2 NT photocathode[J].Electrochimica Acta,2019,320:134617.

[4] TANG S F,LI N,YUAN D L,et al.Comparative study of persulfate oxidants promoted photocatalytic fuel cell performance:simultaneous dye removal and electricity generation[J].Chemosphere,2019,234:658.

[5] LEE S L,HO L N,ONG S A,et al.Comparative study of photocatalytic fuel cell for degradation of methylene blue under sunlight and ultra-violet light irradiation[J].Water,Air,& Soil Pollution,2016,227(12):445.

[6] WANG M Y,IOCCOZIA J,SUN L,et al.Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis[J].Energy & Environmental Science,2014,7(7):2182.

[7] GALSTYAN V,MACAK J M,DJENIZIAN T.Anodic TiO2 nanotubes:a promising material for energy conversion and storage[J].Applied Materials Today,2022,29:101613.

[8] XIAO M,WANG Z L,LYU M Q,et al.Hollow nanostructures for photocatalysis:advantages and challenges[J].Advanced Materials,2019,31(38):1801369.

[9] LIU Y B,LI J H,ZHOU B X,et al.Efficient electricity production and simultaneously wastewater treatment via a high-performance photocatalytic fuel cell[J].Water Research,2011,45(13):3991.

[10] LIU Y X,CHEN R,ZHU X,et al.3D radially-grown TiO2 nanotubes/Ti mesh photoanode for photocatalytic fuel cells towards simultaneous wastewater treatment and electricity gener-ation[J].Journal of Cleaner Production,2022,381:135200.

[11] YANG M Q,XU Y J,LU W H,et al.Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids[J].Nature Communications,2017,8:14224.

[12] SUN W X,WEI N,CUI H Z,et al.3D ZnIn2S4 nanosheet/TiO2 nanowire arrays and their efficient photocathodic protection for 304 stainless steel[J].Applied Surface Science,2018,434:1030.

[13] ZHANG G P,WU H,CHEN D Y,et al.A mini-review on ZnIn2S4-Based photocatalysts for energy and environmental application[J].Green Energy & Environment,2022,7(2):176.

[14] LI J Y,LI J H,CHEN Q P,et al.Converting hazardous organics into clean energy using a solar responsive dual photoelectrode photocatalytic fuel cell[J].Journal of Hazardous Materials,2013,262:304.

[15] COSTAS A,FLORICA C,PREDA N,et al.Radial heterojunction based on single ZnO-CuxO core-shell nanowire for photo-detector applications[J].Scientific Reports,2019,9:5553.

[16] YANG L X,LI L,YANG Y,et al.Facile synthesis of Cu/CuxO nanoarchitectures with adjustable phase composition for effective NOx gas sensor at room temperature[J].Materials Research Bulletin,2013,48(10):3657.

[17] WANG P,NG Y H,AMAL R.Embedment of anodized p-type Cu2O thin films with CuO nanowires for improvement in photoelectrochemical stability[J].Nanoscale,2013,5(7):2952.

[18] ZHANG Z H,WANG P.Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy[J].Journal of Materials Chemistry,2012,22(6):2456.

[19] YUAN W J,WU Y Y,FANG C,et al.Engineering nanowire array structure of copper oxide/cuprous oxide for enhanced oxygen evolution reaction[J].Journal of the Electrochemical Society,2020,167(2):022508.

[20] YIN X H,SHENG P T,ZHONG F F,et al.CdS/ZnIn2S4/TiO2 3D-heterostructures and their photoelectrochemical properties [J].New Journal of Chemistry,2016,40(8):6675.

[21] TAN C W,ZHU G Q,HOJAMBERDIEV M,et al.Adsorption and enhanced photocatalytic activity of the {0001} faceted Sm-doped ZnIn2S4 microspheres[J].Journal of Hazardous Materials,2014,278:572.

[22] MA H C,LIU Y F,FU Y H,et al.Improved photocatalytic activity of copper heterostructure composites (Cu-Cu2O-CuO/AC) prepared by simple carbothermal reduction[J].Australian Journal of Chemistry,2014,67(5):749.

[23] WANG L,HUANG X,HAN M E,et al.Efficient inhibition of photogenerated electron-hole recombination through persulfate activation and dual-pathway degradation of micropollutants over iron molybdate[J].Applied Catalysis:B Environmental,2019,257:117904.

[24] LI W J,LI D Z,ZHANG W J,et al.Microwave synthesis of ZnxCd1-xS nanorods and their photocatalytic activity under visible light[J].The Journal of Physical Chemistry:C,2010,114:2154.

[25] YANG L,BAI X,SHI J,et al.Quasi-full-visible-light absorption by D35-TiO2/g-C3N4 for synergistic persulfate activation towards efficient photodegradation of micropollutants[J].Applied Catalysis:B Environmental,2019,256:117759.