参考文献(References):
[1] 刘传洋,吴一全.基于深度学习的输电线路视觉检测方法研究进展[J].中国电机工程学报,2023,43(19):7423.
[2] XU J,ZHAO W,LIU P,et al.Removing rain and snow in a single image using guided filter[C]//2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE),May 25-27,2012,Zhangjiajie,China.New York:IEEE,2012:304.
[3] HAO J Y,JIANG M R,HUANG Y Q,et al.Scatter inpainting algorithm for rain or snow removal in a single image[C]//2018 IEEE 4th International Conference on Computer and Communications (ICCC),December 7-10,2018,Chengdu,China.New York:IEEE,2018:1700.
[4] LEPCHA D C,GOYAL B,DOGRA A,et al.Image super-resolution:a comprehensive review,recent trends,challenges and applications[J].Information Fusion,2023,91:230.
[5] TIAN C W,ZHANG M H,ZUO W M,et al.A cross transformer for image denoising[J].Information Fusion,2024,102:102043.
[6] CHEN Z X,HE Z W,LU Z M.DEA-Net:single image dehazing based on detail-enhanced convolution and content-guided attention[J].IEEE Transactions on Image Processing,2024,33:1002.
[7] SONG Y D,HE Z Q,QIAN H,et al.Vision transformers for single image dehazing[J].IEEE Transactions on Image Processing,2023,32:1927.
[8] ANWAR T,MU C X,YOUSAF M Z,et al.Robust fault detection and classification in power transmission lines via ensemble machine learning models[J].Scientific Reports,2025,15(1):2549.
[9] WANG H,XIE Q,ZHAO Q,et al.RCDNet:an interpretable rain convolutional dictionary network for single image deraining[J].IEEE Transactions on Neural Networks and Learning Systems,2024,35(6):8668.
[10] FU X Y,HUANG J B,ZENG D L,et al.Removing rain from single images via a deep detail network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),July 21-26,2017,Honolulu,Hawaii,USA.New York:IEEE,2017:1715.
[11] 杨青,于明,付强,等.基于倍频卷积和注意力机制的图像去雨[J].控制与决策,2023,38(12):3372.
[12] XIANG P,WANG L,WU F X,et al.Single-image de-raining with feature-supervised generative adversarial network[J].IEEE Signal Processing Letters,2019,26(5):650.
[13] SHEN Y Y,FENG Y D,WANG W M,et al.MBA-RainGAN:a multi-branch attention generative adversarial network for mixture of rain removal[C]//2022 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP),May 23-27,2022,Singapore,Singapore.New York:IEEE,2022:3418.
[14] RAJ N B,VENKETESWARAN N.Single image haze removal using a generative adversarial network[C]//2020 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET),August 4-6,2020,Chennai,India.New York:IEEE,2020:37.
[15] BOROUJENI P H,RAZI A.IC-GAN:an improved conditional generative adversarial network for RGB-to-IR image translation with applications to forest fire monitoring[J].Expert Systems with Applications,2024,238(Part D):121962.
[16] AZAD R,AGHDAM E K,RAULAND A,et al.Medical image segmentation review:the success of U-Net[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2024,46(12):10076.
[17] CHENG J,DENG C J,SU Y Z,et al.Methods and datasets on semantic segmentation for unmanned aerial vehicle remote sensing images:a review[J].ISPRS Journal of Photogrammetry and Remote Sensing,2024,211:1.
[18] 吕振鸣,董绍江,夏宗佑,等.基于改进CycleGAN的多失真类型水下图像增强[J].浙江大学学报(工学版),2025,59(6):1148.
[19] ISOLA P,ZHU J Y,ZHOU T H,et al.Image-to-image translation with conditional adversarial networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),July 21-26,2017,Honolulu,Hawaii,USA.New York:IEEE,2017:1125.
[20] 史加荣,王丹,尚凡华,等.随机梯度下降算法研究进展[J].自动化学报,2021,47(9):2103.
[21] 赵园喜,邱志斌,朱轩,等.基于SSIM-Sobel与多特征融合的绝缘子缺陷识别方法[J].智慧电力,2023,51(12):74.
[22] ZHAI W X,NI Z X,XU Z,et al.T2R-pix2pix:a method for constructing rural thematic road network based on pix2pix[J].Computers and Electronics in Agriculture,2025,230:109911.
[23] TODA R,TERAMOTO A,KONDO M,et al.Lung cancer CT image generation from a free-form sketch using style-based pix2pix for data augmentation[J].Scientific Reports,2022,12(1):12867.
[24] DAYARATHNA S,ISLAM K T,URIBE S,et al.Deep learning based synthesis of MRI,CT and PET:review and analysis[J].Medical Image Analysis,2024,92:103046.
[25] 魏业文,李梅,解园琳,等.基于改进Faster-RCNN的输电线路巡检图像检测[J].电力工程技术,2022,41(2):171.